A Reinvestigation of the Normal Vibrations of Thioacetamide

Arabinda Ray and D. N. Sathyanarayana

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India (Received January 30, 1973)

The normal coordinate treatments of thioacetamide and its seven isotopic molecules have been carried out using Urey-Bradley force constants refined by a least-squares procedure. The laser Raman spectrum of thioacetamide has also been recorded.

A satisfactory assignment of the infrared frequencies of thioacetamide (TAM) and its N-deuterated molecule was made by Suzuki1) with the aid of a normal coordinate analysis using Urey-Bradley force field. Walter and Kubersky2) reinvestigated the infrared spectra of TAM and its several isotopic molecules. They appear to doubt the applicability of the results of the normal coordinate treatment (of Suzuki) to the isotopic molecules of TAM and have proposed considerable revision of the assignments of the infrared spectrum of TAM. It is of particular interest that the C=S stretching frequency was assigned around 975 cm⁻¹, as was done by some earlier workers^{3,4)} instead of a band near 720 cm⁻¹ as favoured by the normal coordinate treatment.1) It was therefore considered worthwhile to reinvestigate the infrared spectral assignments of this simplest thioamide, the results of which could be of considerable interest for other molecules. We report here the results of the normal coordinate treatments of TAM and its seven isotopic molecules—CH₃CSND₂, CD₃CSNH₂, CD₃CSND₂, CH₃CS¹⁵NH₂, ¹³CH₃CSNH₂, ¹³CH₃CSND₂, and CH₃¹³CSNH₂. The laser Raman spectrum of TAM has also been recorded.

Experimental

Infrared Spectra: We recorded the infrared spectra of thioacetamide (E. Merck) and its N-deuterated molecule in the range 4000—250 cm⁻¹. The frequency data agree with those of Walter and Kubersky²) within 2—3 cm⁻¹. In order to utilize the infrared data of other isotopes and for uniformity, the data from the latter were only employed in the calculations.

Raman Spectrum: The Raman spectrum of powdered TAM sealed in a capillary tube was taken on a Cary 81 Raman spectrophotometer using argon laser. The spectrum was kindly recorded for us by Dr. J. R. Scherer of the U. S. Department of Agriculture, Albany, California, to whom we are grateful for this help. The Raman bands are included in Table 2.

Normal Coordinate Treatment

The structural parameters and the internal symmetry coordinates were the same as those employed by Suzuki.¹⁾ The NH and CH stretching modes, however, were retained in the calculations. The initial force constants were taken from Suzuki. Twelve of these force constants were refined by a least-squares technique⁵⁾ from 14 frequencies by keeping all stretching constants and three bending constants around the thioamide carbon fixed. The final force constants are given in Table 1. They are comparable to the initial set except for $F_{\rm HNH}(=-0.33~{\rm mdyn/Å})$. We have pre-

Table 1. Force constants (mdyn/Å) for thioacetamide

Stretching	Bending	Repulsion		
K _{CH} 4.50	H _{SCN} 0.240	F _{NCS} 0.991		
$K_{\rm NH} = 5.52$	$H_{ m NCC} = 0.270$	$F_{ m NCC} = 0.894$		
$K_{\rm CN} = 5.70$	H_{CCS} 0.270	$F_{\rm CCS}$ 0.286		
$K_{\rm CS}=3.40$	$H_{\rm CNH} 0.308$	$F_{\rm CCH}$ 0.479		
$K_{\rm cc}$ 2.70	$H_{ m HNH} \ 0.567$	$F_{\rm CNH}$ 0.481		
	$H_{\rm CCH}$ 0.279	$F_{\rm HCH}$ 0.122		
$k^{\rm a)}_{\rm CH_3} = -0.071$	$H_{\rm HCH} = 0.391$	$F_{\rm HNH} - 0.332$		
ū		F' = -0.1F		

a) Intramolecular tension in mdyn·Å

ferred keeping the force constants within the framework of Urey-Bradley field to the alternate method of keeping $F_{\rm HNH}$ as zero, and introducing a non Urey-Bradley term between two NH bonds, as was done in the case of acetamide and other molecules. If the force constant $F_{\rm HNH}$ is kept zero, the NH₂ stretching frequencies deviate largely and the force filed does not converge satisfactorily. The frequencies of the isotopic molecules were calculated employing the refined force constants. All the numerical calculations were made on an IBM 360/44 computer.

Results and Discussion

The observed and calculated frequencies for TAM are given in Table 2, and for N- and C-deuterated TAM in Table 3, where the assignments obtained from the potential energy distribution (PED) are also shown. The agreement between the observed and calculated frequencies for TAM is excellent and that for isotopes of TAM listed in Tables 3 and 4 is fairly good. The calculated ND stretching frequencies deviate somewhat in the deuterated molecules. This may be attributed to the effects of hydrogen bonding.

The assignments given in Table 2 are practically the same as Suzuki's, and will therefore not be discussed. The satisfactory reproduction of the frequency shifts for several isotopic molecules of TAM (Tables 3 and 4) reflects the validity of the Urey-Bradley force constants and also the assignments derived therefrom. The revision of Suzuki's infrared assignments for TAM by Walter and Kubersky²) therefore finds no support from isotopic molecules. When extensive coupling of the vibrations are involved, correlation by inspection of the frequency variations in the isotopic molecules with the assignments may be difficult as in the case of N,N-dimethylformamide.⁹)

The C=S stretching mode has been attributed by Suzuki to a band at 720 cm⁻¹ which has a mjaor contribution (approx. 60%) from the mode. This

Table 2. Vibrational frequencies (cm⁻¹) and assignments for thioacetamide

Raman	Infra- red ^{a)}	Calcd	Assignments (PED, %)	Raman	Infra- red ^{a)}	Calcd	Assignments (PED, %)	
	3295 3080	3295 3080	ν _a NH(100) ν _c NH(98)	975 vw	972	973	ν CC(37)+rCH ₃ (21) +rNH ₂ (17)+ ν CS(11)	
	2977	2978	v_a CH(100); v CH(A")		760wsh ^{b)}		$\tau NH_2(A'')$	
	2945	2945	v.CH(100)	720 vs	719	717	ν CS(60)+ ν CC(16)	
1650 vw	1650 1648	1650	$\delta NH_2(84) + \nu CN(10)$	712 s 515 mw	709 512		$wN\dot{H}_{2}(A'')$ $\pi CC(A'')$	
1474 mb	1479	1479	$\delta_{\rm a} { m CH_3(55)} + { m rCH_3(21)} + \nu { m CN(15)}$	471 s 463	471 460	465	δ NCS(74)+ ν CS(14)	
1432 vw 1406 wb	1390	 1390	$\delta CH_3(A'')$ $\nu CN(54) + \delta_a CH_3(23)$	379 w 372 vw	$377w^{b)}$	377	δ CS(63)+ δ NCS(21)	
1370 m	1362	1361	$\delta_{\rm s} {\rm CH}_{\rm a}(88)$	220 w	n.i.			
1312 wsh 1297 mw	1303	1303	$rNH_2(42) + \nu CC(24) + \nu CS(13) + \delta NCS(12)$	162 ms 120 s	n.i.		$ au \mathrm{CH_3}(\mathrm{A''})$	
	1130w ^{b)}		$rCH_3(A'')$	101 m	n.i.		Lattice modes	
1038 s	1025	1025	$rCH_{3}(46) + rNH_{2}(24) + \delta_{a}CH_{3}(11)$	80 s				

A" vibrations are tentatively assigned (cf. Table 3) a) From Ref. 2. b) From present investigation. n.i. denotes not investigated.

assignment is supported by the large red shift of the band, by 30—60 cm⁻¹, in metal complexes, where the thiocarbonyl sulfur is the donor^{10,11} and the shift of the band to 675 cm⁻¹ on S-methylation.¹²) A comparison of the infrared spectrum of TAM with that of selenoacetamide ("Selenation") has also confirmed this assignment.¹²) Thus the attribution of C=S stretching vibration to \sim 975 cm⁻¹ frequency by Walter and Kubersky and others is not supported.^{2-4,13}) This band has, however, about \sim 10% C=S stretching mode and shows minor changes on complex formation, S-methylation and selenation.¹⁰⁻¹²)

The C=S stretching vibration generally occurs as a

split band in isotopic molecules. It appears at considerably lower wave numbers in deuterated molecules (Tables 3 and 4) depending on the nature of vibrational coupling.

Out-of-plane Vibrations. A tentative assignment for the seven A" vibrations of TAM is given in Table 2.

The CH₃ out-of-plane rocking mode generally occurs at a higher frequency than CH₃ in-plane rocking and is of weaker intensity in amides. Accordingly, a weak broad band near 1130 cm⁻¹ is attributed to CH₃ out-of-plane rocking in TAM, the band being slightly intensified in metal complexes.^{10,11} Identification of CH₃ torsional mode is difficult since lattice modes

Table 3. Infrared frequencies and their assignments for N- and C- deuterated thioacetamide

Frequencies, cm ⁻¹		CH ₃ CSND ₂ Assignments	Frequence	ies, cm ⁻¹	CD ₃ CSNH ₂ Assignments
Obsd ^{a)}	Calcd	(PED, %)	Obsd ^a)	Calcd	(PED, %)
2981	2978	ν_{a} CH(100); ν CH(A'')	3296	3295	v _a NH(100)
2924	2945	$v_{\rm s} { m CH}(100)$	3077	3080	$v_{\rm s}NH(98)$
2485	2443	$v_{\rm a}ND(99)$		2211	$v_a CD(98)$; $vCD(A'')$
2285	2238	$v_{\rm s}ND(95)$		2112	$v_{\rm s} {\rm CD}(99)$
1506 1486	1487	v CN(30)+ δ_a CH ₃ (40) +rCH ₃ (18)	1653 1648	1650	$\delta NH_2(84) + \nu CN(10)$
1424	1416	$\nu \text{CN}(44) + \delta_{\text{a}} \text{CH}_{3}(34);$ $\delta \text{CH}(\text{A''})$	1438		
1360	1361	$\delta_{\rm s} {\rm CH}_{\rm s}(91)$	1393	1403	vCN(69)
1240	1231	ν CC(35)+ ν CS(21) +rND ₂ (16)+NCS(14)	1303	1301	$rNH_{2}(43) + \nu CC(25) + \nu CS(14)$
1164	1179	$\delta ND_2(73)$	1234		, ,
979	983	$rCH_3(62) + \delta_aCH_3(12) + \nu CN(11)$	1094	1086	$\delta_{\mathrm{s}}\mathrm{CD_{3}(61)} + \nu\mathrm{CC(26)} \ + \mathrm{rNH_{2}(11)}$
836	838	$rND_{2}(60) + \nu CC(33)$	1034	1038	$\delta_{a}\mathrm{CD_{3}(87)};\delta\mathrm{CD_{3}(A^{\prime\prime})}$
700 694	691	ν CS(64)+ ν CC(10)	975		$\mathrm{rCD_3}(\mathrm{A''})$
580 556		$ au \mathrm{ND_2}(\mathrm{A''})$	957	954	$ \begin{array}{l} \mathrm{rNH_2(31)} + \nu \mathrm{CS(22)} \\ + \delta_{\mathrm{s}} \mathrm{CD_3(17)} + \nu \mathrm{CC(15)} \end{array} $
523	-	$\pi CC(A'')$	812	817	$rCD_3(58) + \nu CN(11);$ $\tau NH_2(A^{\prime\prime})$
480	-	$\mathrm{wND_2}(\mathrm{A''})$	709		$wNH_{2}(A'')$
428	420	$\delta NCS(64) + \delta CS(17) + rND_2(13)$	670 664	663	$ \begin{array}{l} \nu \text{CS}(55) + \text{r}\text{CD}_3(22) \\ + \nu \text{CC}(13) \end{array} $
_	374	δ CS(61)+ δ NCS(24)	461 448	453	δ NCS(78)
				343	δ CS(65) + δ NCS(15)

a) From Ref. 2.

Table 4. Observed and calculated frequencies (cm⁻¹) for some isotopic molecules of thioacetamide

$\mathrm{CD_3CSND_2}$		CH ₃ CS ¹⁵ NH ₂		¹³ CH ₃ CSNH ₂		¹³ CH ₃ CSND ₂		CH ₃ ¹³ CSNH ₂	
Obsd ^{a)}	Calcd	Obsd ^{a)}	Calcd	Obsd ^{a)}	Calcd	Obsda)	Calcd	Obsd ^{a)}	Calcd
2477	2443	3288	3285	3292	3295		2967	3297	3295
2285	2238	3081	3075	3082	3080		2942	3082	3080
	2210	2980	2978	2978 2967	2967		2443	2979	2978
	2112	2934	2945	2942	2941		2238	2944	2945
1488		1654 1640	1642	1652 1648	1650	1506 1502	-	1653 1647	1649
1462	1439	1475	1477	1478	1478	1485	1487	1475	1471
1236	1229	1387 1382	1383	1389	1389	1421	1415	1464	
1197		1361	1361	1364		1367		1370	1367
1172	1174	1300	1298	1351	1352	1351	1352	1360	1355
	1056	1024	1022	1303	1299	1236	1225	1304	
1028	1036	970	969	1022	1018		1177	1286	1280
814	809	714	712	973	-	973	976	1026	1022
	802	704	-	965	964	831	831	963	966
694	_	512	-	718 710	712	700		714	713
663									
658	652	466 453	460	703		693 689	6 87	705	
573		****	376	512	<u> </u>	580		512 5 01	
546				470 459	463	<u></u> 557		471 460	468
523	-				372	523	-		379
438						478		-	
416	410		-			426	418	-	
	341	-	*******				369		

a) From Ref. 2.

interfere in this region. A band at 162 cm⁻¹ in Raman may be favoured to methyl torsion in comparison with that at 155 cm⁻¹ in acetamide.¹⁴)

Both the wagging and torsional vibrations of the NH₂ group in TAM were assigned¹⁾ earlier to a fairly sharp band at 709 cm⁻¹. In the Raman spectrum also the corresponding band is sharp. Careful observation of the infrared spectrum of TAM shows a weak shoulder at 760 cm⁻¹ to the main absorption at 720 cm⁻¹. In metal complexes of TAM, the 760 cm⁻¹ band acquires intensity and is sometimes observed as a farily strong band as in the case of copper(I) and palladium(II) chloride complexes. 10,11) We favour therefore the weak band at 760 cm⁻¹ in TAM to NH₂ torsion in comparison with that at 810 cm⁻¹ (weak) in acetamide.¹⁴⁾ The intense band at 709 cm⁻¹ is attributed to NH₂ wagging mode in agreement with the earlier assignment.¹⁾ This is compatible with the NH₂ wagging in acetamide assigned¹⁴⁾ to a strong band at 700 cm⁻¹.

The remaining three A" vibrations of TAM are easily assigned as indicated in Table 2. In the deuterated molecules CD_3 out-of-plane rocking is expected near ca. $1000 \, \mathrm{cm^{-1}}$, and the torsional and wagging modes of ND_2 , respectively, around δ 550 and 500 cm⁻¹. It is satisfying to note that bands are observed in this region in deuterated molecules (Tables 3 and 4). For a more definite assignment of the A" vibrations, a normal coordinate analysis would be helpful.

The authors wish to thank Prof. W. Walter for a copy of his paper, and Prof. C. C. Patel for helfpul discussions.

References

- 1) I. Suzuki, This Bulletin, 35, 1449 (1962).
- 2) W. Walter and H. P. Kubersky, Ann. Chem., 694, 56 (1966).
 - 3) E. Spinner, Spectrochim. Acta, 15, 95 (1959).
 - 4) W. Kutzelnigg and R. Mecke, ibid., 17, 530 (1961).
- 5) T. Shimanouchi and I. Suzuki, J. Mol. Spectrosc., 6, 277 (1961).
- 6) T. Uno, K. Machida, and Y. Saito, This Bulletin, 42, 897 (1969).
- 7) I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 18, 513 (1962).
- 8) K. Kuchizu and L. S. Bartell, J. Chem. Phys., 36, 2460 (1962).
- 9) G. Durgaprasad, D. N. Sathyanarayana, and C. C. Patel, This Bulletin, **44**, 316 (1971).
- 10) C. D. Flint and M. Goodgame, J. Chem. Soc., A, 1968, 750.
- 11) R. R. Iyengar, D. N. Sathyanarayana, and C. C. Patel, J. Inorg. Nucl. Chem., 34, 1088 (1972).
- 12) K. A. Jensen and P. H. Nielsen, Acta Chem. Scand., 20, 597 (1966).
- 13) C. Collard-Charon and M. Rensen, Bull. Soc. Chem. Belges, 72, 304 (1963).
- 14) T. Uno, K. Machida, and Y. Saito, Spectrochim. Acta, 27A, 833 (1971).